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Abstract. We present a general framework for pricing life insurance contracts embed-

ding a surrender option. The model allows for several sources of risk, such as uncertainty

in mortality, interest rates and other financial factors. We describe and compare two

numerical schemes based on the Least Squares Monte Carlo method, emphasizing un-

derlying modeling assumptions and computational issues.
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1. Introduction

Life insurance contracts usually offer policyholders a variety of options and can therefore

be regarded as options packages, as suggested by Smith (1982) and Walden (1985). A first

distinction can be made between American and European options. In the first case poli-

cyholders have the right to alter the contract before its natural termination, from which

the expression ‘early exercise’. Since in practice exercise can occur at regular time inter-

vals only, these options are essentially of Bermudan type. In the second case exercise is

admitted only at contract expiration, i.e. at the minimum between a fixed maturity and

the insured’s death time. Since the expiration date is in this case random, these options

are called Titanic by Milevsky and Posner (2001). For large enough portfolios of insureds

with independent and identically distributed lifetimes pooling arguments can be applied to
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reduce the pricing of a Titanic option to the situation of a portfolio of European options

with different maturities. This is not the case when early resolution of the contract is

allowed.

The most common American option that has attracted the interest of researchers in

recent years is undoubtedly the surrender option. It gives the policyholder the right to

terminate the contract before death or maturity and receive a cash amount called surrender

value. It is therefore a knock-out American put option written on the residual contract, with

exercise price given by the surrender value. The option can be exercised only upon survival,

hence the insured’s death represents the knock-out event. As opposed to the Titanic option

case, the analysis of surrender options cannot be reduced to a portfolio of American options

with different maturities, even when pooling arguments can be used to neutralize non-

systematic mortality risk. Indeed, the surrender decision involves a comparison, at any date

of possible exercise and only if the insured is still alive, between the surrender value and the

value of the residual contract, which simultaneously depends on financial and demographic

factors. As a result, the option cannot be properly priced unless both demographic and

financial risk factors are analyzed in an integrated fashion.

The valuation of surrender options is of interest to insurers because early withdrawals re-

duce assets under management and may generate imbalances in the mortality risk profile of

remaining insureds. Any withdrawal risk is clearly increased by the presence of minimum

guarantees on surrender values, while the provision of guarantees on survival and death

benefits can make the contract more or less valuable to policyholders at any given time,

depending on market conditions. The long term nature of insurance policies, as well as the

range of financial exposures that modern insurance products entail, make the valuation of

surrender options quite challenging. The literature has usually focused on purely financial

contracts and on simplifying assumptions on the dynamics and the number of risk factors.

Early examples are represented by the seminal papers Albizzati and Geman (1994) and

Grosen and Jørgensen (1997, 2000), which paved the way for a number of following studies.

Due to the high dimensionality of the problem (multiple exercise dates, several risk factors),

the analysis of surrender options is usually carried out for stylized situations. When mov-

ing to more realistic models, contributions become fewer. For example, the introduction of

mortality is present in a limited number of papers, which we group according to the pricing
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methodology employed: binomial or multinomial trees; partial differential equations and

free boundary problems; Least Squares Monte Carlo (LSMC) simulation. In the first group

of papers, for example, Bacinello (2003a,b) considers participating policies, while Vannucci

(2003) and Bacinello (2005) consider equity-linked contracts embedding a surrender option

(see Section 3.1 for a detailed description of these contracts). In both cases mortality as

well as interest rates are deterministic, the single premium is computed by backward induc-

tion, and the annual premium is implicitly defined by a recursive procedure. The papers by

Steffensen (2002), Moore and Young (2005) and Shen and Xu (2005) are representative of

the second approach, where the surrender option problem is cast in terms of a free bound-

ary problem requiring the numerical solution of a partial differential equation. While the

approach is very helpful to understand the mechanics of rational exercise in stylized cases,

it becomes intractable for more realistic situations. As the number of risk factors increases,

the numerical burden becomes unsurmountable and a number of simplifying assumptions

are required. The third approach, which is at the heart of the present paper, includes the

works by Andreatta and Corradin (2003), Baione, De Angelis and Fortunati (2006) and

Bacinello, Biffis and Millossovich (2008). The first two contributions seem to combine the

LSMC approach (proposed by Carrière, 1996; Longstaff and Schwartz, 2001; Tsitsiklis and

Van Roy, 2001, for the valuation of purely financial American claims) with the approach

proposed by Bacinello (2003a,b) to introduce mortality risk in the valuation of surrender

options for participating contracts. Since it is not completely clear how mortality plays

its final role in the valuation algorithm, Bacinello, Biffis and Millossovich (2008) intro-

duced an alternative procedure to employ the LSMC approach in the context of mortality

uncertainty.

The aim of the present paper is threefold. First, we apply the LSMC approach to a

general pricing framework, showing how to integrate the analysis of rational exercise and

death in the early resolution of the contract. There are clearly alternative simulation

methods for pricing American options (see Glasserman, 2004, and references therein), but

they are not very effective in the presence of multiple state variables and several exercise

dates. Since our objective is to cope with a range of features of real-world markets, such

as stochastic volatility, jumps in asset prices or randomness in the force of mortality, we

focus on the powerful LSMC approach.
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Second, we refine and extend the procedure of Bacinello, Biffis and Millossovich (2008)

by describing two algorithms applicable to setups of different degrees of generality. The

first one essentially relies on the requirement that the random time of death cannot be

foretold given knowledge of asset prices and demographic risk factors. The second one

imposes additional structure and requires the insured’s time of death to coincide with the

first jump of a conditionally Poisson process. We show that the methods of Andreatta and

Corradin (2003) and others must rely on the (conditionally) Poisson assumption, while the

one introduced in Bacinello, Biffis and Millossovich (2008) applies more generally. More

interestingly, we show that even when the (conditionally) Poisson assumption is desirable,

application of the first algorithm is more efficient.

Finally, we encompass in a common framework the case of differences in policyholders’

and insurers’ risk preferences. Empirical evidence (e.g., FSA, 2007) shows that surrenders

can be affected by factors such as distribution channels, bad publicity, etc., thus requiring

some modifications in our basic framework. In addition, while insurance companies operate

at portfolio level and can exploit diversification effects, policyholders are faced with their

own time of death only, when making rational surrender decisions. The relevance of this

angle is somewhat limited when adopting a prudent perspective (for pricing and reserving

purposes), as discussed in Bacinello (2005) and in Section 4.5 of this paper, but can be

important for realistic valuations.

The paper is structured as follows. In Section 2 we describe a general model for dif-

ferent life insurance contracts. We begin by introducing an arbitrage-free financial market

where frictionless trading can occur continuously over time. We then introduce mortality

uncertainty and extend the market to include life insurance contracts. In Section 3, we

introduce early exercise features and describe the valuation of insurance securities embed-

ding surrender options, providing in turn some examples of typical guarantees and options

available on the market. In Section 4 we briefly describe the LSMC approach, emphasizing

the key approximations involved and reviewing some convergence results. We then provide

two LSMC algorithms that exploit different features of the pricing framework. We discuss

computational implications and show how the first algorithm not only applies more gener-

ally, but also outperforms the second in terms of computational speed and approximation

errors. Furthermore, we adapt both algorithms to the case of asymmetric insurer’s and
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policyholder’s risk preferences. In Section 5 we offer numerical examples for unit-linked

or participating endowments with different types of minimum guarantees attached to sur-

vival, death and surrender benefits, as well as for deferred annuities with a death benefit.

Section 6 provides some concluding remarks.

2. Valuation Framework

2.1. Financial Market. We take as given a filtered probability space (Ω,F , F, P), where

P is the real-world or physical probability measure and F
.
= (Ft)t≥0 is a filtration satisfying

the usual conditions of right continuity and P-completeness and such that F0 = {∅,Ω}. We

will add more structure to F when considering more specific examples. Available for trade

are d+1 securities with semimartingale price processes S0, S1, . . . , Sd. Trading takes place

continuously over time and without incurring transaction costs. Security S0 represents the

balance of a money market account formalizing the investment of cash at a continuously

compounded locally risk-free rate r. We set S0
·

.
= exp(

∫ ·

0
rsds) and assume that r is

predictable and such that E(
∫ t

0
|ru|du) < ∞ for all t ≥ 0. The remaining d securities

represent risky assets with cumulated dividends processes D1, . . . ,Dd of bounded variation,

adapted, and null at time 0. For i = 1, . . . , d, we let Si
t denote the time-t ex-dividend price

of security i, meaning that the security pays the lump sum dividend ∆Di
t = Di

t −Di
t− and

is then available for trade at price Si
t .

The absence of arbitrage is essentially equivalent to the existence of a probability measure

Q∗ equivalent to P under which the gain from holding a security is a Q∗-martingale after

deflation by the money market account (e.g., Duffie, 2001). If Gi
t

.
= Si

t +
∫ t

0
dDi

u denotes1

the gain from holding security i from time 0 to time t, then by no-arbitrage the following

risk-neutral valuation formula applies

Si
t

S0
t

= EQ∗

[
Si

v

S0
v

+

∫ v

t

dDi
u

S0
u

∣∣∣∣∣Ft

]
(2.1)

for all v ≥ t ≥ 0 and each i = 1, . . . , d, where we assume that the price of any security

is 0 at a given time t if no dividends are paid thereafter. Deflation could be performed

by using any security with strictly positive price process: while this may be preferable in

some applications (e.g., Bacinello and Ortu, 1994; Biffis and Millossovich, 2006), the use of

1Here and in the sequel,
∫ b

a
denotes integration over (a, b].
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S0 helps economic intuition when extending the market to include insurance securities (see

Section 2.3).

2.2. Demographic Uncertainty. Let us consider an individual aged x years at a refer-

ence time 0. We denote by τ her random residual lifetime and denote by H the filtration

generated by the process Nt
.
= 1τ≤t, which equals zero as long as the individual is alive

and jumps to one at death. We enlarge the filtration F of previous section to include H

and set G
.
= F ∨ H, with G0 trivial. We see that τ is a G-stopping time, since at each time

t the information carried by Gt allows us to tell whether death has occurred or not by t.

We then consider an enlargement (Ω,G, G, Q) of the filtered space (Ω,F , F, Q∗) defined in

the previous section and assume that the arbitrage free financial market introduced above

preserves its structure after the enlargement. We also take G strictly larger than F, mean-

ing that knowledge of F (e.g., observation of security prices) does not yield knowledge of

occurrence of τ . The following results hold in the present setup and will be used later: every

G-predictable process Y coincides with an F-predictable process Y on {τ > t}; moreover,

every G-stopping time θ coincides with an F-stopping time θ̄ on {τ > t} (see Protter, 2004,

p. 370).

The setup can be specialized by making additional assumptions. For instance, τ could

be defined by

τ
.
= inf

{
t
∣∣∣
∫ t

0

µudu > ξ

}
, (2.2)

with µ a nonnegative F-predictable process and ξ a unit exponential random variable in-

dependent of F∞. This construction is equivalent to the so-called conditionally Poisson

(equivalently, Cox or doubly stochastic) setup, meaning that, under Q and conditional on

F∞, the random time τ is the first jump time of a Poisson inhomogeneous process with

intensity (µt)t≥0. One of the appealing consequences of (2.2) is that the arbitrage free

financial market introduced in Section 2.1 automatically preserves its structure after the

enlargement (see Bielecki and Rutkowski, 2001). More prosaically, the setup is appeal-

ing because survival and death probabilities resemble stochastic counterparts of formulas

traditionally employed by actuaries and demographers (e.g., Biffis, 2005).

2.3. Insurance Contracts. It is now natural to extend the financial market by working

on the probability space (Ω,G, G, Q) and introducing a life insurance contract issued to the

individual described above. We denote by V the price process of a life policy and by D its
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cumulated dividend. As opposed to Section 2.1, D is now adapted to the larger filtration

G, which means it may depend on the individual’s time of death. We let D = Dd + Ds,

where Dd and Ds represent cumulated benefits contingent on death and survival, defined

as

Dd
t =

∫ t

0

Bd
u−dNu = Bd

τ−1τ≤t

Ds
t =

∫ t

0

(1 − Nu)dBs
u = Bs

τ−1τ≤t + Bs
t 1τ>t

(2.3)

for some F-adapted processes Bd and Bs, with Bs of bounded variation. While Bd
u repre-

sents a lump sum payable in case of death at time u, Bs
u denotes cumulated benefits paid in

case of survival up to time u. The above formulation includes several types of life insurance

policies such as endowments, pure endowments, (deferred) annuities, term and whole life

assurances: we just need to suitably specify the quantities Bd and Bs. For example, we

may represent:

⋆ a single benefit b ∈ FT payable in case of survival at a fixed maturity T > 0, by

setting Bs
t = 1t≥T b;

⋆ an F-adapted benefit stream (bt)t≥0 payable from time T until death (deferred

annuity), by setting dBs
t = 1t≥T btdt;

⋆ a discrete sequence of lump sum payments b1, b2, . . . at times T1, T2, . . ., by letting

Bs
t =

∑
i bi1t≥Ti

with bi ∈ FTi
for each i.

We could also include in Bs possible annual premiums paid by the policyholder (see Biffis,

2005, for additional examples).

Under no-arbitrage, we can rewrite (2.1) for the extended market as

Vt = S0
t EQ

[
Vv

S0
v

+

∫ v

t

dDu

S0
u

∣∣∣∣∣Gt

]
(2.4)

for all v ≥ t. For convenience, we let V denote the F-predictable pre-death price of the

security, in the sense that Vv = 1τ>vV v. When τ is defined by (2.2), we obtain (e.g., Duffie,

Schroder and Skiadas, 1996)

Vt = 1τ>tŜ
0
t EQ

[
V v

Ŝ0
v

+

∫ v

t

Bd
u

Ŝ0
u

µudu +

∫ v

t

dBs
u

Ŝ0
u

∣∣∣∣∣Ft

]
, (2.5)
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where Ŝ0
· = exp(

∫ ·

0
(rs+µs)ds) represents a ‘mortality risk-adjusted money market account’.

Expression (2.5) shows that the standard risk-neutral machinery passes over quite simply

to the mortality-contingent setting, provided we consider fictitious securities paying an

instantaneous dividend Bd
uµudu+dBs

u under a fictitious short rate r+µ. Indeed, by (2.5) the

pre-death gain from holding the security, Gt
.
= V t +

∫ t

0
(Bd

uµudu+dBs
u), is an F-martingale

under Q, after deflation by Ŝ0. Formula (2.4) is more general than (2.5), as no doubly

stochastic assumption on τ is required (actually, it extends well beyond the information

structure introduced in Section 2.2). This has also computational consequences, since any

simulation algorithm to compute the expectation in (2.4) will make explicit reference to G,

as opposed to (2.5), where only F is explicitly considered.

3. Insurance contracts embedding early exercise features

We now embed a surrender option in the life contract introduced above, allowing the

policyholder to withdraw from the contract at any time before maturity receiving a lump

sum called surrender value.2 Let Bw (w for ‘withdrawal’) be an F-adapted process: we

say that the policyholder receives a surrender benefit Bw
θ if she surrenders the contract at

time θ. We take θ to be a G-stopping time and call it an exercise policy. If the option is

exercised at θ, the cumulated dividend process generated by the contract is Dθ + Dw(θ),

where Dθ represents the cumulated dividends (2.3) stopped at θ (i.e., Dθ
t

.
= Dt∧θ for all t)

and Dw(θ) is given by

Dw
t (θ) =

∫ t

0

(1 − Nu)Bw
u dLu(θ) = Bw

θ 1θ≤t,θ<τ (3.1)

with Lu(θ)
.
= 1θ≤u. The case of no surrender is covered by setting θ = τ , which yields

Dw(θ) = 0. Some policies may allow surrender only within a time-window [t, T ], t > 0, for

example in order to recoup the expenses incurred to issue the contract. If that is the case,

we set Bw
u = 0 for u ∈ [0, t).

Let V w(θ) denote the price process of the contract when the surrender option is exercised

at time θ. By (2.4) we have, on {θ > t}:

V w
t (θ) = S0

t EQ

[∫ θ

t

d(Du + Dw
u (θ))

S0
u

∣∣∣∣∣Gt

]
. (3.2)

2In practice, surrender is usually allowed if the contract provides benefits both in case of death and survival,

to avoid antiselection.
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Denoting by TG the set of finite valued G-stopping times, the price of our contract is then

given by the solution of the optimal stopping problem

V w∗
0 = sup

θ∈TG

V w
0 (θ) = sup

θ∈TG, θ≤τ

V w
0 (θ), (3.3)

where we have used the fact that V w
0 (θ) = V w

0 (θ ∧ τ) by (3.1)-(3.2). A solution to (3.3)

is called a rational exercise policy, in the sense that it maximizes the initial arbitrage-free

value of the resulting claim. While this can be justified by replication arguments when

markets are complete, the case of incomplete markets is more delicate (e.g., Duffie, 2001).

We do not expand on this issue here and simply employ (3.3) under a given risk-neutral

measure Q.

We can now take advantage of the structure of G to replace θ with an F-stopping time

θ̄ coinciding with θ up to time τ and write expression (3.2) on {θ̄ > t} as follows (e.g.,

Bielecki and Rutkowski, 2001)

V w
t (θ̄) =

1τ>tS
0
t

Q(τ > t|Ft)
EQ

[∫ θ̄

t

1τ>t

d(Du + Dw
u (θ̄))

S0
u

∣∣∣∣∣Ft

]
. (3.4)

We can therefore rewrite the optimization problem (3.3) as

V w∗
0 = sup

θ∈TG

V w
0 (θ) = sup

θ̄∈TF

V w
0 (θ̄) = sup

θ̄∈TF, θ̄≤τ

V w
0 (θ̄), (3.5)

with TF the set of finite-valued F-stopping times. When the stopping time τ is doubly

stochastic, formula (3.4) can be finally rewritten on {τ ∧ θ̄ > t} as

V w
t (θ̄) = Ŝ0

t EQ

[∫ θ̄

t

d(D̂u + D̂w
u (θ̄))

Ŝ0
u

∣∣∣∣∣Ft

]
, (3.6)

with dD̂u = dBs
u + Bd

uµudu and dD̂w
u (θ̄) = Bw

u dLu(θ̄). The value of the contract is then

obtained by taking the supremum of the last expression over F-stopping times, as in (3.5).

3.1. Examples of surrender guarantees. Surrender guarantees are provided by a num-

ber of insurance contracts. A few relevant examples for single-premium policies are provided

below. We refer the reader to Bacinello (2005) for considerations on surrender penalties,

which are not discussed here.

3.1.1. Equity-linked endowments. Endowments provide a lump sum payment at maturity

T in case of survival, or a payment at the time of death if it occurs before T . In the
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equity-linked case, payment amounts depend on the market value of a reference fund and

usually embed minimum guarantees. A typical example is represented by benefits of the

following form:

Bs
t = F s

T 1t≥T Bd
t = F d

t 1t<T Bw
t = Fw

t 1t<T , (3.7)

with terminal guarantees of the type

F e
t = F0 max

(
St

S0

, exp(κet)

)
, (3.8)

or with cliquet guarantees

F e
t = F0

⌊t⌋∏

u=1

max

(
1 + η

(
Su

Su−1

− 1

)
, exp(κe)

)
, (3.9)

where e = s, d, w and ⌊t⌋ denotes the integer part of t. In the above expressions F0 is

the initial value of the reference fund, S is the price process of each fund unit, κe is the

minimum interest guaranteed on different causes of exit (survival at maturity, death or

withdrawal). In (3.8), benefits depend only on the current value of the units, while in

(3.9) path dependence is introduced by the periodic resettlements of the reference fund. As

common in practice, relation (3.9) implicitly assumes yearly resettlements, but of course a

different frequency could be considered. With particular reference to the cliquet guarantee,

a crucial role is played by the rate η identifying the portion of performance recognized to

the policyholder. Typically one has η ∈ (0, 1]: when η = 1, the whole cost of the guarantee

is paid at inception; when η < 1 instead, the cost is (partially) recovered by the insurer

when returns on the reference portfolio exceed the minimum guarantee.

3.1.2. Participating endowments. In participating contracts the insurer shares profits with

policyholders in different ways. As an example, we consider here the ‘reversionary bonus’

method, according to which shared profits are credited as bonuses to the policy reserves at

the end of each year. The crediting mechanism generates a regular adjustment of benefits

(including surrender values) that typically allows for some minimum guarantee. As for

equity-linked endowments, benefits could still be expressed by (3.7), with

F e
t = F0

⌊t⌋∏

u=1

max

(
1 + η

(
Su

Su−1

− 1

)
, exp(κe)

)
(3.10)
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in the case of unsmoothed profit-sharing, or by

F e
t = F0

⌊t⌋∏

u=1

max


1 +

η

u ∧ y

u∧y∑

j=1

(
Su−j+1

Su−j

− 1

)
, exp(κe)




in the case of smoothed profit sharing, where smoothing occurs over y years and, as before,

e = s, d, w. The first case is formally identical to the case of equity-linked endowments

with cliquet guarantees, but now F0 denotes the policy value at inception and S an index

representing the performance of the insurer’s portfolio. In the smoothed profit sharing

case, the credited bonuses depend not only on the most recent performance of the insurer’s

portfolio, but also on the average performance over the last y years of contract. We note that

in both the smoothed and unsmoothed case, the absence of arbitrage imposes constraints

on the choice of parameters η and {κe}e=s,d,w when the initial policy value F0 coincides

with the single premium (see Bacinello, 2001).

3.1.3. Whole life assurances. Whole life assurances provide lump sum payments upon death

of the insured. Benefits can in this case be expressed as

Bs
t = 0 Bd

t = F d
t Bw

t = Fw
t , (3.11)

with {F e
t }e=d,w defined as in the previous examples, depending on whether the contract is

equity-linked or with-profit. Note that (3.11) can be obtained as a particular case of (3.7)

by setting T = ∞.

3.1.4. Deferred annuities with death benefit. Deferred annuities provide payments upon

survival at dates T0, T1, . . ., with T0 > 0 denoting the end of the deferment period. When

combined with a term assurance with maturity T0 (equivalently, when a refund guarantee

is provided on the premiums contributed during the deferment period), the contract allows

for surrender before time T0. Examples are obtained by setting

Bs
t =

∑

i=0,1,...

bi1t≥Ti
Bd

t = F d
t 1t<T0

Bw
t = Fw

t 1t<T0
, (3.12)

where {F e
t }e=s,d,w is defined as in the case of equity-linked endowments with terminal or

cliquet guarantees, and

bi = χF s
T0

, (3.13)
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with χ ∈ (0, 1) denoting the rate of conversion into a life annuity. The conversion rate could

be fixed at inception or depend on market and demographic conditions prevailing at time

T0. Annuity payouts are constant according to specification (3.13), but could be linked to

the performance of some reference fund or index (S′
t)t≥0, for example by setting

bi = χF s
T0

max

(
S′

Ti

S′
T0

, exp(κa(Ti − T0))

)
, (3.14)

with κa denoting a guaranteed minimum interest rate.

To conclude, an example of contract with both a death benefit and survival benefits

payable until death is represented by a single premium annuity combined with a whole life

assurance with death benefits decreasing over time (representing partial refund of the single

premium in case of early death). Similarly, a common case is that of an annuity-certain

of (say) k installments, combined with a deferred annuity with payments starting in the

(k+1)-th period: if death occurs when only h < k installments have been paid, beneficiaries

receive a lump sum representing the present value of the residual (k − h) payments.

4. Implementation of the LSMC Approach

The LSMC approach relies on the combination of Monte Carlo simulation and Least Squares

regression in an environment where randomness is generated by a multidimensional Markov

process X. The method involves three main approximations. A first approximation is

represented by discretization of the time dimension, which has the effect of replacing the

American claim with a Bermudan claim. Without loss of generality, we consider a unitary

discretization step (where the time unit of measure is arbitrary) and set T = {0, 1, . . . , n}

for suitable integer n. The original optimal stopping problem (3.3) is then replaced by its

discretized version along the time grid T,

sup
θ∈TG,T

EQ [gθ] , (4.1)

with TG,T the family of T-valued G-stopping times and g the square-integrable G-adapted

process of discounted future dividends originated by the contract. Using the notation of

Section 2, we have gt =
∫ t

0
dGu/S0

u.

As common when dealing with American options (see Duffie, 2001, for example), one can

introduce the Snell envelope of g and apply the dynamic programming principle to develop



REGRESSION-BASED ALGORITHMS FOR SURRENDER GUARANTEES 13

a backward procedure involving a comparison, at each time step, between the option payoff

and the reward from not exercising (continuation value). It is characteristic of the LSMC

method to look at such procedure in terms of optimal stopping times. An optimal policy

θ∗ = θ∗0 is computed according to the backward algorithm





θ∗n = n

θ∗j = j1gj>Uj
+ θ∗j+11gj≤Uj

for j = n − 1, . . . , 0,

where Uj = EQ[gθ∗
j+1

|Gj ]. Since we work in a Markovian environment, we have Uj =

EQ[gθ∗
j+1

|Xj ] and can write Uj = u(j,Xj) for some Borel functions u(j, ·), j ∈ T. A second

approximation is now introduced by replacing each u(j,Xj) with the orthogonal projection

from L2(Ω) onto the vector space generated by a finite set of functions {e1(X), . . . , eH(X)}

taken from a suitable basis. For fixed H and each j, we denote by ũ(j,Xj) such projection

and set ũ(j,Xj) = βj · e(Xj), with e the vector-valued function (e1, . . . , eH)′ and βn a

suitable coefficient vector (β1
j , . . . , βH

j )′.

A third approximation is then introduced by simulating the state variable process X

over the time grid T (or over a finer grid), in order to employ least squares regression to

compute the projections (ũ(j,Xj))j∈T. If M is the number of simulations, and Xm
j and gm

j

(with m = 1, . . . ,M) denote the simulated values of Xj and gj in the m-th simulation, we

set ũ(j,Xm
j ) = β∗

j · e(Xm
j ) with β∗

j the least square estimator obtained by solving

β∗
j = arg min

βj∈RH

M∑

m=1

(
gm

θ∗
j+1

− βj · e(Xm
j )

)2

. (4.2)

Clément, Lamberton and Protter (2002) show that, as H goes to infinity, the value function

of problem (4.1) with Uj replaced by ũ(j,Xj) approaches the value function of the original

problem. They also prove almost sure convergence of the Monte Carlo procedure, for

fixed H, and provide the asymptotic error distribution. The joint effect of H and M on

convergence is less clear: some non-asymptotic results can be found in Gobet, Lemor and

Warin (2005), while interesting numerical investigations are reported in Moreno and Navas

(2003) and Stentoft (2004).

We now describe the implementation of the general procedure with reference to our val-

uation setup. We propose two algorithms based on the increasingly restrictive assumptions

introduced in Section 2.2.
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4.1. Algorithm 1. With reference to the generic m-th iteration (m = 1, . . . ,M), we in-

troduce the following notation:

• τm: simulated time of death.

• Xm
t : simulated vector of state variables at time t ∈ T.

• Pm
t : simulated payoff from the contract at time t ∈ T. Depending on the contract

considered, it may involve: a death benefit Bd,m
τm when t = τm; a surrender benefit

Bw,m
t payable upon survival and surrender at time t; a survival benefit, with a

slight abuse of notation denoted by Bs,m
t , which represents the simulated value of

∫ t

t−1

S0
t

S0
u

1τ>udBs
u.

• vm
t,u: discount factor for the period [t, u], with t, u ∈ T and t < u. More explicitly,

we have vm
t,u = S0,m

t /S0,m
u , with (S0,m

t )t∈T the simulated money market account in

the m-th iteration.

The valuation algorithm requires the execution of the following steps:

step 0: (simulation) Simulate M paths of X over the time grid T, with n = ⌈maxm τm⌉,

where ⌈t⌉ denotes the smallest integer greater than or equal to t.3

step 1: (initialization) Set θ∗,m = ⌈τm⌉ and Pm
θ∗,m = Bd,m

θ∗,m for m = 1, . . . ,M .

step 2: (backward iteration) For j = n − 1, n − 2, . . . , 1:

(1) (continuation values) Set Ij = {1 ≤ m ≤ M : τm > j} and, for m ∈ Ij , set

Cm
j =

∑θ∗,m

h=j+1
Pm

h vm
j,h.

(2) (regression) Regress the continuation values (Cm
j )m∈Ij

against (e(Xm
j ))m∈Ij

to obtain C̃m
j = β∗

j · e(Xm
j ) for m ∈ Ij . If Bw,m

j > C̃m
j then set θ∗,m = j and

Pm
j = Bw,m

j + Bs,m
j , otherwise set Pm

j = Bs,m
j .

step 3: (initial value) Compute the single premium of the contract

V ∗
0 =

1

M

M∑

m=1

θ∗,m∑

j=1

Pm
j vm

0,j .

4.2. Algorithm 2. As described in Section 2.3, we can price contracts by using (2.5) and

(3.6) rather than (2.4) and (3.2). Even if the underlying assumption is that τ is doubly

stochastic in both cases, expression (2.5) reduces valuation to computation of conditional

expectations with respect to the smaller filtration F. The algorithm needs to be changed

3Clearly, it may be convenient to simulate all processes over a finer grid.



REGRESSION-BASED ALGORITHMS FOR SURRENDER GUARANTEES 15

accordingly. We first fix n large enough to represent the maximum residual lifetime (in the

grid unit of measure) of our reference insured. The backward procedure will be started from

n in every simulation, thus making unnecessary the simulated values τm. The notation for

the other simulated quantities is as before, except for the following:

• Bs,m
t : simulated value of

∫ t

t−1

Ŝ0
t

Ŝ0
u

(dBs
u + Bd

uµudu). (4.3)

• v̂m
t,u: risk-adjusted discount factor for the period [t, u], with t, u ∈ T and t < u.

More explicitly, we have v̂m
t,u = Ŝ0,m

t /Ŝ0,m
u , with (Ŝ0,m

t )t∈T denoting the simulated

mortality risk-adjusted money market account introduced in Section 2.3.

The valuation algorithm is modified as follows:

step 0: (simulation) Simulate M paths of X over the time grid T.

step 1: (initialization) Set Pm
n = Bs,m

n , θ̄∗,m = n, for m = 1, . . . ,M .

step 2: (backward iteration) For j = n − 1, n − 2, . . . , 1:

(1) (continuation values) For m = 1, . . . ,M let Cm
j =

∑θ̄∗,m

h=j+1
Pm

h v̂m
j,h.

(2) (regression) Regress the continuation values (Cm
j )m=1,...,M against (e(Xm

j ))m=1,...,M

to obtain C̃m
j = β∗

j · e(Xm
j ) for every simulated path. If Bw,m

j > C̃m
j set

θ̄∗,m = j and Pm
j = Bw,m

j + Bs,m
j , otherwise set Pm

j = Bs,m
j .

step 3: (initial value) Compute the single premium of the contract

V ∗
0 =

1

M

M∑

m=1

θ̄∗,m∑

j=1

Pm
j v̂m

0,j .

We note that in the above algorithm we have considered the F-stopping time θ̄ coinciding

with θ up to τ (see Section 2.2).

4.3. Computing the option price. The simplest way to obtain the time-0 value of the

surrender option is to compute, along with V ∗
0 , the initial value of the European version of

the contract V0, and then find the option price by subtracting V0 from V ∗
0 . If V0 cannot

be expressed in closed form, it can be computed by executing the previous algorithms with

Step 2 replaced by

step 2: (backward iteration) For j = n − 1, n − 2, . . . , 1 set Ij = {1 ≤ m ≤ M :

τm > j} and, for m ∈ Ij , let Pm
j = Bs,m

j
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in Algorithm 1, and by

step 2: (backward iteration) For j = n − 1, n − 2, . . . , 1 and for m = 1, . . . ,M let

Pm
j = Bs,m

j

in Algorithm 2.

4.4. Comparison. The key difference between the two algorithms is that the second one

avoids the simulation of the time of death at the cost of simulating all relevant risk factors up

to an arbitrary maximum time step n. As a result, depending on the contracts considered,

either algorithm may prove more efficient. For example, the first method may be preferable

for whole life or annuity contracts, where maturities coincide with death times. On the

other hand, the advantage may reduce considerably for contracts with fixed maturity and

low terminal age, where only few simulated paths are likely to be shortened by death

occurring before maturity. Still, in the numerical examples of Section 5 we find that the

first algorithm outperforms the second in computational speed by at least 15%. This may

be also due to the following reasons. In the first algorithm computations can be simplified

by considering in the regression step, at each exercise date, only trajectories in which the

insured is alive, since the continuation value in the remaining trajectories is zero and needs

not be estimated. Put another way, the death indicator process N can be excluded from

the set of state variables. This may be relevant depending on the relative importance of

‘no survival paths’ with respect to ‘survival paths’ at exercise dates. Finally, the second

algorithm requires an additional approximation in computing the integral in (4.3). For

contracts providing death benefits this may result in additional approximation errors (note

that the integrand needs to be evaluated numerically as well), or additional computational

effort to contain these errors. On the other hand, the first algorithm is unaffected by this

drawback as long as the contract provides lump sum benefits only.

4.5. Realistic valuations. So far, we have fixed an equivalent martingale measure Q re-

flecting the insurer’s preferences toward risk. A common way to identify Q is to assume

independence between financial and demographic risk factors, and calibrate the restric-

tions of Q to the two sources of uncertainty separately (e.g., Biffis, 2005). The financial

component of Q is identified by looking at prices of traded securities, while the demo-

graphic component is identified by looking at mortality assumptions commonly used in the

insurance market. Since insurers operate at portfolio level, however, Q is likely to reflect
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diversification effects that the single policyholder cannot enjoy. More generally, our rep-

resentative policyholder may have different risk preferences and decide whether or not to

terminate the contract on the basis of a different probability measure, say Q♯. The insurer

can specify Q♯ by using experience data, for example by making Q♯ and Q agree on the

financial risk factors (to ensure consistency with financial security prices), and adjusting

the demographic component of the equivalent martingale measure so as to match the com-

pany’s data as closely as possible. This calibration exercise is far from trivial, but one can

use the fact that the LSMC approach provides information on the timing of surrender de-

cisions. An iterative application of the valuation approach could further rely on sensitivity

analysis results such as those reported in Bacinello, Biffis and Millossovich (2008) or in

Section 5.2 of this paper.

For tractability, we assume that Q♯ is an equivalent martingale measure preserving the

structure of Section 2.2 (precise conditions are given in Biffis, Denuit and Devolder, 2005).

We can then let θ♯,∗ denote the stopping time solving problem (4.1) under Q♯, i.e.

sup
θ∈TG,T

EQ♯

[gθ] .

Given the policyholder’s optimal policy θ♯,∗, the insurance company can then value any

stream of cashflows dependent on θ♯,∗ by applying risk-neutral valuation under the ‘pricing’

measure Q. All life policies considered so far could then be valued by computing EQ [gθ♯,∗ ].

Now, the inequality

V ♯,∗
0

.
= EQ [gθ♯,∗ ] ≤ sup

θ∈TG,T

EQ [gθ]

shows that direct valuation of (4.1) under Q would be prudential from the insurer’s view-

point, as discussed in Bacinello (2005). On the other hand, the approach described here

could produce a value for the American contract, V ♯,∗
0 , lower than the one of the corre-

sponding European contract, V0, again computed under Q. In this case the surrender option

would represent an asset (rather than a liability) for the insurer. Although regulatory and

accounting rules may not allow its recognition on the balance sheet, a proper quantification

of V ♯,∗
0 − V0 is certainly useful for realistic valuations. To do so, we can easily adapt the

previous algorithms to the current situation. Since Algorithm 1 and Algorithm 2 can be

modified along the same lines, we describe only the first one as an example. The notation
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is as in the original algorithm for realizations under Q, while we add the superscript ♯ to

the corresponding realizations under Q♯.

Algorithm 1♯.

step 0: Construct M paths of X (under Q) and, correspondingly, M paths of X♯

(under Q♯), over the time grid T, with n = ⌈maxm τm⌉ ∨ ⌈maxm τ ♯,m⌉.

step 1: (initialization) For m = 1, . . . ,M set θ♯,m = ⌈τ ♯,m⌉, P ♯,m

θ♯,m = B♯,d,m

θ♯,m , θm =

⌈τm⌉, Pm
θm = Bd,m

θm .

step 2: (backward iteration) For j = n − 1, n − 2, . . . , 1:

(1) (continuation values) Set I♯
j = {1 ≤ m ≤ M : τ ♯,m > j} and, for m ∈ I♯

j , let

C♯,m
j =

∑θ♯,m

h=j+1
P ♯,m

h v♯,m
j,h ; set Ij = {1 ≤ m ≤ M : τm > j} and, for m ∈ Ij ,

let Pm
j = Bs,m

j .

(2) (regression) Regress the continuation values (C♯,m
j )

m∈I
♯
j

against (e(X♯,m
j ))

m∈I
♯
j

to obtain C̃♯,m
j = β♯

j · e(X♯,m
j ) for m ∈ I♯

j . If B♯,w,m
j > C̃♯,m

j then set θ♯,m = j

and P ♯,m
j = B♯,w,m

j + B♯,s,m
j , otherwise set P ♯,m

j = B♯,s,m
j .

step 3: (initial value) For m = 1, . . . ,M , if θ♯,m < τ ♯,m ∧ τm then set Pm
θ♯,m =

Pm
θ♯,m + Bw,m

θ♯,m , otherwise set θ♯,m = θm. Finally, compute the single premium of

the contract as

V ♯,∗
0 =

1

M

M∑

m=1

θ♯,m∑

j=1

Pm
j vm

0,j .

We note that construction of the paths in Step 0 can be more conveniently performed

by simulating all relevant processes (including the Radon-Nykodim density dQ♯/dQ|
Gt

)

under one measure and then obtaining the corresponding realizations under the alternative

measure by applying the Girsanov-Meyer Theorem (Protter, 2004, p. 132). Finally, the

value of the European contract V0 can be computed exactly as described in Section 4.3, i.e.

by using the insurance company’s equivalent martingale measure Q.

5. Applications

In this section we apply the valuation framework to equity-linked or participating endow-

ments of the type described in Sections 3.1.1 and 3.1.2, as well as to a deferred annuity

introduced in Section 3.1.4. The objective of these exercise is to provide a realistic applica-

tion and comparison of the two algorithms, not to describe their optimal implementation,

which may rely on different simulation techniques. As an example, we consider a model of
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financial and demographic risk factors that is a special case of those described by Biffis and

Millossovich (2006): it includes random interest rates and mortality as well as jumps and

stochastic volatility in the reference fund dynamics. The case of equity-linked endowments

with terminal guarantees was examined in Bacinello, Biffis and Millossovich (2008) by using

a particular version of Algorithm 1. However, the only benchmark available there was the

use of affine transform methods for the European contract. Here, we validate their results

in the American case by using Algorithm 2.

5.1. Financial and demographic risk factors. Consider a state variable process X =

(r, Y,K, µ,N) taking values in R+ × R × R+ × R+ × {0, 1}. The first three components

represent financial risk factors: r is the short rate, Y the log-price process of a reference

fund S = eY , K the square of the instantaneous non-jump volatility of S. The process

µ represents the force of mortality of the reference policyholder, while N is the doubly

stochastic death indicator. The processes r, Y and K evolve under Q according to the

following stochastic differential equations:

drt =ζr(δr − rt)dt + σr

√
rtdZr

t

dYt =

(
rt −

1

2
Kt − λY µY

)
dt +

√
Kt

(
ρSKdZK

t + ρSrdZr
t +

+
√

1 − ρ2
SK − ρ2

SrdZS
t

)
+ dJY

t

dKt =ζK(δK − Kt)dt + σK

√
KtdZK

t ,

(5.1)

where the processes Zr, ZS and ZK are independent standard Brownian motions, JY is a

compound Poisson process with jump arrival rate λY > 0 and i.i.d. log-Normal jumps ∆Y .

Specifically, we assume that log(1 + ∆Y ) is Normal with mean µY and standard deviation

σY > 0. JY is assumed to be independent of the vector (Zr, ZS , ZK). The parameters

ζr, ζK , δr, δK , σr and σK are all strictly positive, while the correlation coefficients ρSK and

ρSr satisfy ρ2
SK +ρ2

Sr ≤ 1. Details on the estimation of model (5.1) are provided in Bakshi,

Cao and Chen (1997). For the intensity of mortality, we take the left continuous version of

the process

dµt = ζµ(m(t) − µt)dt + σµ

√
µtdZµ

t + dJµ
t , (5.2)

where Zµ is a standard Brownian motion and Jµ is a compound Poisson process indepen-

dent of Zµ, with jump arrival rate λµ ≥ 0 and exponential jumps of mean γµ > 0. The
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couple (Zµ, Jµ) is assumed to be independent of (Zr, ZS , ZK , JY ). The parameters ζµ, σµ

and the function m are strictly positive. It is easily seen that the vector-valued process

X is affine, so that some prices can be computed analytically (see Biffis and Millossovich,

2006) to cross check the performance of the LSMC approach in the absence of early exer-

cise features. We combined analytical results with our Monte Carlo algorithms to choose a

satisfactory number of basis functions for the examples below.

5.2. Numerical examples. We consider the single premium unit-linked or participating

endowments described in Sections 3.1.1 and 3.1.2. The reference insured is a male aged

x = 40 at time 0. The contract has maturity T = 15 years and provides either terminal

(see (3.8)) or cliquet guarantees (see (3.9) or (3.10)) on survival, death and surrender

benefits. We apply both algorithms described in Section 3 with polynomial basis functions

of order 3. The first approximation introduced is the discretization of the time dimension,

which has the effect of replacing the American claim with a Bermudan claim: we call

Backward Discretization Step (BDS) the length in years of each time interval arising from

this discretization. To simulate the state variable process X, we employ a time grid finer

than T and call Forward Discretization Step (FDS) the length in years of each time interval

in the finer grid. The parameters used for our simulations are reported in Table 1. For the

financial risk factors we used values broadly consistent with the estimates given in Bakshi,

Cao and Chen (1997), where model (5.1) was calibrated to a large dataset of S&P500

options. With regard to mortality dynamics, we specified the function m in (5.2) by fitting

a Weibull intensity, given by m(t) = c−c2

1 c2(x+ t)c2−1 (with c1 > 0, c2 > 1), to the survival

probabilities for a male aged 40 implied by table SIM2001, commonly used in the Italian

endowment market.

< Table 1 about here >

Results for the case of terminal guarantees are reported in Table 2, those for cliquet

guarantees in Table 3. Column A1 (A2) reports the time-0 values of American contracts

obtained by using Algorithm 1 (Algorithm 2), while column E1 (E2) reports the values

of the underlying European contract computed by using the modified Algorithm 1 (Algo-

rithm 2), as illustrated in Section 4.3. Surrender options values, O1 and O2, are obtained

by subtracting columns E1 and E2 from columns A1 and A2. The corresponding standard
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errors are reported in parenthesis. We ran 19000 simulations with 140 different seeds for

terminal guarantees, 30000 simulations with 100 different seeds for cliquet guarantees. In

both cases, we used antithetic variables to reduce variance. We found that Algorithm 1 is

faster than Algorithm 2 by 15% to 20% in the two cases: this is remarkable, since the con-

tract considered represents an example for which we expect small differences in performance

(see Section 4.4).

< Table 2 about here >

< Table 3 about here >

In the case of terminal guarantees we have considered different values for minimum rates

guaranteed upon death or survival (κ
.
= κd = κs) and surrender (κw). Of course, the price

of the European contract does not depend on κw. In the case of cliquet guarantees we

have set κe = κ for e = d, s, w and let κ change with the participation coefficient η. From

Table 2 one can see that the results obtained with the first and second algorithm are very

close. As expected, the value of the European contract is increasing with the minimum

interest rate guaranteed upon death or survival, κ, while the value of the American contract

is increasing with both κ and the minimum interest rate guaranteed upon surrender, κw

(see Figure 1). The value of the surrender option, instead, increases with κw and decreases

with κ. The option becomes worthless for high κ with respect to κw, because exiting the

contract is then less attractive.

< Figure 1 about here >

In the case of cliquet guarantees, the state variables vector X must be augmented to

include the value of the guarantee F e (see expression (3.9)), since at each time t the value

of F e
t cannot be inferred from Xt. From Table 3 we can see that surrender option values

decrease with both the participation rate η and the minimum guaranteed interest κ. They

become negligible as soon as η is 60% or greater. This is due to the fact that provision

of high participation rates together with minimum guarantees induces the policyholder to

stay in the contract. On the opposite, the surrender option is significantly valuable when

both η and κ are low. The value of the American contract for different values of the couple
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(η, κ) is plotted in Figure 2. We remark that when the value of the European contract is

below S0 = 100, neither the price of the minimum guarantee nor S0 are covered by the

premium paid at inception: they are both financed by the annual returns in excess of κ

retained by the insurer. This is why the surrender option value becomes very significant

and drives the price of the American contract close to S0.

< Figure 2 about here >

We then investigate the impact of parameter changes on the value of the surrender

options. Bacinello, Biffis and Millossovich (2008) examined changes in parameters σµ and

γµ to understand the effects of mortality volatility on option values. Here, we look at

the effects of the volatility of the reference fund process, by considering different levels of

jump intensity λY and variance volatility σK . The results are reported in Table 4, and are

obtained by using Algorithm 1 with κ
.
= κd = κs = 2% and different values for κw. In

Figure 3 we plot the value of the American contracts (column A in Table 4) for different

pairs (λY , σK) when κw = 0%. As expected, the higher volatility of the fund generates

higher option values for the European case (see columns E in Table 4). However, it is well

known (e.g., Cox and Rubinstein, 1985) that things are more complicated in the American

case. The reason is that while higher volatility makes it more likely for the fund to reach

a fixed target level, the same is not necessarily true if the volatility affects the target level

itself, as may occur for the exercise boundary in our case. The resulting surrender option

value depends on which one of the two effects eventually prevails. From Table 4 we see

that the early exercise premium (columns O in Table 4) decreases in both σK and λY as

long as κw > κ. This is no longer true when κw ≤ κ, in which case different combinations

of parameters σK , λY , κ and κw have different effects on the option values.

< Table 4 about here >

< Figure 3 about here >

As a last example, we consider the case of a deferred annuity offering surrender and death

benefit guarantees during the deferment period: see (3.12). We consider an equity-linked

contract issued to an individual aged 50 at time 0 and providing terminal guarantees of
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type (3.8), where we set κ
.
= κw = κs = κd. Annuity payments begin at time T0 = 15, are

made once per year until death, and are defined according to (3.13). To avoid antiselection,

surrender is allowed only during the deferment period. For the purpose of valuation the

contract is then equivalent to an endowment contract with maturity T0 and survival benefit

χF s
T0

aT0
, where aT0

denotes the market price of a unitary annuity available to the insured

at time T0. If χ is based on market annuity rates available at the conversion date (i.e., if

χ = 1/aT0
), then there is no difference with the numerical examples illustrated before. We

then focus on the case where χ is fixed at inception of the contract. In Table 5 we report

the valuation results obtained for different levels of conversion rate χ, when we use the

model of Section 5.1 without jump component in the intensity of mortality (5.2) (again,

we ran 19000 simulations with 140 different seeds). For m(·) we fit a Weibull function to

the survival probabilities implied by table SIM2001 for t ≤ T0 (for a male aged 50 at 0),

to those implied by the projected table IPS55 for t > T0 (for a male aged 65 at T0). To

compute the market value aT0
, we use the expression

aT0
= S0

T0

∞∑

i=0

EQ
[
(S0

Ti
)−11τ>Ti

∣∣∣GT0

]
= 1τ>T0

Ŝ0
T0

∞∑

i=0

EQ
[
(Ŝ0

Ti
)−1

∣∣∣FT0

]
.

For each simulated realization (say the m-th one) of the relevant risk factors at time T0, we

compute am
T0

by solving a system of ordinary differential equations, as illustrated in Biffis

and Millossovich (2006). Once the realizations a1
T0

, . . . , aM
T0

are available, all we need is to

apply the more efficient Algorithm 1 over the time horizon [0, T0].

From Table 5 we see that the European contract value is increasing with the guaranteed

rate χ, as expected. For low values of χ (i.e., conversion is penalizing compared to current

market conditions), the value is even below par, despite the presence of the minimum death

guarantee during the deferment period. This makes surrender opportunities very attractive,

and hence the surrender option is extremely valuable. For high values of χ instead, it is very

convenient to remain in the contract (particularly when the guaranteed rate κ is high) and

the surrender option becomes valueless. As far as the American contract value is concerned,

it is fairly insensitive to changes in χ when the conversion rate is low and the surrender

component is very valuable.

< Table 5 about here >
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6. Conclusions

In this paper we have presented a general framework for pricing life insurance contracts

embedding surrender options. We have introduced two numerical schemes based on the

Least Squares Monte Carlo method and described their flexibility in the context of jump-

diffusion models for financial and demographic risk factors. As practical examples, we have

implemented the schemes for pricing equity-linked and participating endowments provid-

ing terminal and cliquet guarantees at death, survival and surrender, as well as deferred

annuities with a death benefit. Future research includes the joint valuation of options to

surrender a policy and to change the portfolio mix of the reference fund over time, as well

as the use of the LSMC approach for risk-management purposes, with a detailed analysis of

the implications of market incompleteness on surrender options and capital requirements.
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7. Tables

r K S µ

BDS = 0.50 r0 = 0.05 K0 = 0.04 S0 = 100.00 µ0 = m(0)
FDS = 0.01 ζr = 0.60 ζK = 1.50 ρSK = −0.70 ζµ = 0.50

δr = 0.05 δK = 0.04 ρSr = 0.00 σµ = 0.03
σr = 0.03 σK = 0.40 λY = 0.50 λµ = 0.10

µY = 0.00 γµ = 0.01
σY = 0.07 c1 = 83.70

c2 = 8.30
x = 40

Table 1: Parameters used in the simulation.

κ κw E1 (s.e.) A1 (s.e.) O1 E2 (s.e.) A2 (s.e.) O2

0% 0% 107.185 (0.047) 113.556 (0.031) 6.372 107.224 (0.046) 113.577 (0.030) 6.353
2% 117.223 (0.031) 10.038 117.237 (0.031) 10.013
4% 123.687 (0.031) 16.503 123.696 (0.031) 16.472
6% 137.130 (0.031) 29.945 137.262 (0.030) 30.038

2% 0% 112.675 (0.045) 115.381 (0.033) 2.706 112.698 (0.044) 115.324 (0.033) 2.626
2% 117.551 (0.031) 4.876 117.524 (0.031) 4.825
4% 123.727 (0.031) 11.052 123.738 (0.031) 11.040
6% 137.327 (0.030) 24.652 137.404 (0.030) 24.706

4% 0% 122.901 (0.041) 123.087 (0.033) 0.186 122.904 (0.040) 122.904 (0.033) 0.000
2% 123.291 (0.033) 0.390 123.130 (0.033) 0.226
4% 124.507 (0.032) 1.606 124.418 (0.032) 1.514
6% 137.710 (0.030) 14.809 137.630 (0.030) 14.726

Table 2: Equity-linked endowment with terminal guarantee: sensitivity analysis with respect to parameters

κ and κw.

κ η E1 (s.e.) A1 (s.e.) O1 E2 (s.e.) A2 (s.e.) O2

0% 20% 65.938 (0.004) 97.205 (0.002) 31.267 66.239 (0.004) 97.216 (0.001) 30.977
40% 89.945 (0.009) 99.496 (0.003) 9.551 90.222 (0.009) 99.651 (0.004) 9.429
60% 121.902 (0.019) 122.067 (0.018) 0.165 122.136 (0.019) 122.251 (0.019) 0.115

2% 20% 69.915 (0.004) 97.598 (0.001) 27.683 70.213 (0.004) 97.609 (0.001) 27.396

40% 94.938 (0.009) 100.080 (0.004) 5.142 95.210 (0.009) 100.585 (0.005) 5.376
60% 128.411 (0.019) 128.470 (0.018) 0.059 128.636 (0.019) 128.698 (0.019) 0.062

4% 20% 75.343 (0.004) 98.096 (0.001) 22.753 75.635 (0.004) 98.109 (0.001) 22.474
40% 100.982 (0.009) 101.959 (0.007) 0.977 101.246 (0.009) 103.107 (0.008) 1.861

60% 135.952 (0.019) 135.952 (0.019) 0.000 136.165 (0.019) 136.198 (0.019) 0.033

Table 3: Participating endowment with cliquet guarantee: sensitivity analysis with respect to parameters
κ and η.
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σK = 0.2 σK = 0.4 σK = 0.6

λY E (s.e.) A (s.e.) O E (s.e.) A (s.e.) O E (s.e.) A (s.e.) O

κw = 0

0 110.417 (0.045) 113.520 (0.032) 3.103 110.582 (0.041) 113.800 (0.030) 3.218 111.477 (0.041) 114.645 (0.031) 3.168
0.25 111.468 (0.046) 114.355 (0.033) 2.887 111.654 (0.043) 114.631 (0.032) 2.978 112.539 (0.043) 115.494 (0.032) 2.955
0.5 112.563 (0.048) 115.084 (0.035) 2.521 112.675 (0.045) 115.381 (0.033) 2.706 113.539 (0.045) 116.240 (0.034) 2.702

1 114.630 (0.051) 116.803 (0.039) 2.173 114.781 (0.047) 117.184 (0.037) 2.403 115.631 (0.048) 118.040 (0.038) 2.409
2 118.907 (0.058) 120.434 (0.046) 1.527 119.033 (0.055) 120.749 (0.044) 1.716 119.857 (0.055) 121.644 (0.044) 1.788

κw = 0.02

0 115.849 (0.030) 5.432 116.020 (0.028) 5.438 116.850 (0.029) 5.373

0.25 116.697 (0.031) 5.228 116.837 (0.030) 5.183 117.648 (0.031) 5.109
0.5 117.430 (0.033) 4.868 117.551 (0.031) 4.876 118.409 (0.032) 4.870
1 119.132 (0.036) 4.502 119.308 (0.034) 4.527 120.170 (0.035) 4.538
2 122.629 (0.043) 3.722 122.766 (0.041) 3.733 123.639 (0.041) 3.782

κw = 0.04

0 122.238 (0.030) 11.821 122.066 (0.029) 11.484 122.853 (0.029) 11.376
0.25 123.100 (0.032) 11.632 122.926 (0.030) 11.273 123.746 (0.031) 11.207
0.5 123.903 (0.033) 11.340 123.727 (0.031) 11.052 124.535 (0.032) 10.997

1 125.670 (0.036) 11.040 125.559 (0.034) 10.778 126.340 (0.035) 10.709
2 129.262 (0.042) 10.355 129.097 (0.040) 10.064 129.892 (0.040) 10.035

κw = 0.06

0 136.304 (0.030) 25.887 135.504 (0.028) 24.922 136.004 (0.028) 24.527

0.25 137.162 (0.031) 25.694 136.487 (0.029) 24.834 137.040 (0.029) 24.501
0.5 137.949 (0.033) 25.387 137.327 (0.030) 24.652 137.894 (0.031) 24.356
1 139.635 (0.035) 25.005 139.106 (0.033) 24.325 139.718 (0.034) 24.086

2 143.177 (0.041) 24.270 142.696 (0.039) 23.663 143.282 (0.039) 23.426

Table 4: Equity-linked endowment with terminal guarantee: sensitivity analysis with respect to parameters λY and σK .
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κ χ E (s.e.) A (s.e.) O

0% 4.0% 62.590 (0.028) 113.243 (0.030) 50.653
5.0% 76.142 (0.033) 113.427 (0.030) 37.285
6.0% 89.695 (0.039) 113.443 (0.030) 23.748
7.0% 103.248 (0.045) 113.445 (0.029) 10.197
7.5% 110.024 (0.048) 115.357 (0.038) 5.332
8.0% 116.801 (0.051) 121.614 (0.048) 4.813
8.5% 123.577 (0.054) 127.118 (0.052) 3.541

2% 4.0% 65.735 (0.027) 116.990 (0.030) 51.255

5.0% 79.988 (0.032) 117.243 (0.030) 37.255
6.0% 94.241 (0.037) 117.272 (0.030) 23.031
7.0% 108.494 (0.043) 117.272 (0.030) 8.778
7.5% 115.620 (0.046) 118.736 (0.035) 3.116
8.0% 122.747 (0.048) 125.763 (0.047) 3.016
8.5% 129.873 (0.051) 131.500 (0.050) 1.627

4% 4.0% 71.552 (0.025) 123.433 (0.031) 51.881

5.0% 87.116 (0.029) 123.798 (0.031) 36.682
6.0% 102.680 (0.034) 123.801 (0.031) 21.121
7.0% 118.244 (0.039) 123.801 (0.030) 5.557
7.5% 126.026 (0.042) 126.409 (0.035) 0.383
8.0% 133.808 (0.044) 134.050 (0.044) 0.242
8.5% 141.590 (0.047) 141.590 (0.047) 0.000

Table 5: Equity-linked deferred annuity: sensitivity analysis with respect to parameters κ and χ.
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8. Figures
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Figure 1: Equity-linked endowment with terminal guarantee, Algorithm 1: value of the American contract
for different pairs (κ, κw).
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Figure 2: Participating endowment with cliquet guarantee, Algorithm 1: value of the American contract
for different pairs (κ, η).
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Figure 3: Equity-linked endowment with terminal guarantee, Algorithm 1: value of the American contract
for different pairs (λY , σK) when κ = 2% and κw = 0%.


